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ABSTRACT

The success of hyperthermia treatment depends on the precise prediction and control of temperature
distribution in the tissue. It was absolutely a necessity for hyperthermia treatment planning to under-
stand the heat transport occurring in biological tissue. The tissue is highly non-homogenous, and non-
Fourier thermal behavior in biological tissue has been experimentally observed. The dual phase lag
model of heat conduction has been used to interpret the non-Fourier thermal behavior. This work
attempts to be an extension study of Antaki [12] and explore whether the DPL thermal behavior exists in
tissue. The inverse non-Fourier bio-heat transfer problem in the bi-layer spherical geometry is analyzed.
In order to further address whether the dual phase lag model of bio-heat transfer merits additional study,
the comparisons of the history of temperature increase among the present calculated results, the
calculated values from the classical bio-heat transfer equation, and the experimental data are made for

Inverse analysis

various measurement locations.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

It is an instinct of the human body to use heat to fight disease. The
use of heat in order to necrotize undesirable tissue for therapeutic
purposes has been in many applications, such as laser, microwave and
magnetic fluid hyperthermia. The success of these thermal therapies
depends on the precise prediction and control of temperature in the
tissue. An ideal thermal treatment should selectively destroy the
target region without damaging the surrounding healthy tissue.
Knowledge of temperature distribution in the entire treatment
region is essential for limiting the temperatures in the healthy tissue
to prevent damage. However, it is not easy to accurately determine
the temperature field over the entire treatment region during clinical
hyperthermia treatments, because the pain tolerance of patients
makes the number of invasive temperature probes limited [1]. Hence,
the analysis and modeling of the underlying thermal mechanisms are
important to optimize the temperature distribution in the treated
region. As Wren et al. [2] stated, in order to further improve the
thermal treatment methods, bio-heat models are essential during
development of equipment, for pre-planning purposes, for on-line
monitoring and decision support as well as for evaluation of the
extent of thermal damage.

The most commonly used model among many bio-heat transfer
models is the Pennes bio-heat model for simplicity and validity. The
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Pennes bio-heat equation was developed on the base of the clas-
sical Fourier's law that depicts an infinitely fast propagation of
thermal signal. However, the contents of the literatures [3—5]
indicated that thermal behavior in non-homogenous media needs
a relaxation time to accumulate enough energy to transfer to the
nearest element and the relaxation time in biological tissues is to be
20—30 s. The experiments of Mitra et al. [6] with processed meat
showed the evidence of non-Fourier conduction in tissue. The
relaxation time for processed meat is of the order of 15 s. Roetzel
et al. [7] also made the experimental investigation for processed
meat and had the value of relaxation time about 2 s. Obviously, the
concept of infinite heat propagation velocity is incompatible with
physical reality in tissues. As a result, the thermal wave model of
bio-heat transfer received the attention from relevant researchers
[8—11].

For developing better tools to predict transient temperature in
tissue, Antaki [12] treated the processed meat as a composite
material that is a heterogeneous compacted mixture of meat
particles and water and used the dual phase lag (DPL) model to
interpret heat conduction in it. After that, Liu and Chen [13] studied
temperature rise behavior in a two-layer concentric spherical
region during magnetic tumor hyperthermia treatment with the
DPL model. The DPL model describes a macroscopic temperature
with the micro-structural effect by introducing the phase lag times
of heat flux and temperature gradient. Specifically, the DPL model
combines the wave features of hyperbolic conduction with a diffu-
sion-like feature of the evidence not captured by the hyperbolic
case [12]. Recently, Zhang [14] developed a bio-heat equation,
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Nomenclature

estimated parameter
c specific heat of tissue, J/kg K
Cp specific heat of blood, J/kg K
d, correction of A,
em deviation between 6% and 6™
f parameter defined in Eq. (21)
H new dependent variable, H = r(T — Tp)
H Laplace transform of H

k thermal conductivity, W/m K

K parameter defined in Eq. (22)

[4 distance between two neighboring nodes, m
M total number of nodes

N total number of estimated parameters
P power density, W/m>

qm metabolic heat generation, W/m?>

qr spatial heating source, W/m>

r space coordinate, m

R radius of tumor, m

S Laplace transform parameter

t time, s

T temperature of tissue, K

I arterial temperature, K

To initial temperature of tissue, K

Wy perfusion rate of blood, m3/s/m>

Wmn parameter defined in Eq. (42)

Greek symbols

Omn Kronecker delta

0 temperature increase defined in Eq. (35)
& standard deviation of the measurements
A parameter defined in Eq. (20)

o density, kg/m>

¥ volume fraction of magnetic particles

Tq phase lag of the heat flux, s

Tr phase lag of the temperature gradient, s
Superscripts

cal calculated value

mea measured data

Subscripts

g magnetic particle

i node number

j number of sub-space domain

k number of layer

m number of time node

n number of estimated parameter

t tumor tissue

which was also called the DPL bio-heat equation, for the perfused
tissue based on the nonequilibrium heat transfer between the
blood in artery and the surrounding tissue. However, the tissue was
regarded as solid media, not non-homogenous media, and the
behavior of heat conduction in the tissue was still described with
the classical Fourier's law. Although Antaki [12] predicted the phase
lag time of heat flux to be 14—16 s and the phase lag time of
temperature gradient to be 0.043—0.056 s for processed meat with
the experimental data measured by Mitra et al. [6], more experi-
mental results are required for showing the physical meanings of
the DPL mode in heat transfer in tissue.

For the study of magnetic tumor hyperthermia, Andra et al. [15]
took a spherical region containing magnetic particles embedded in
extended muscle tissue as model of small carcinoma and measured
the spatial distribution of temperature as function of exposure time
around the spherical composite. This work attempts to be an
extension study of Antaki [12] and explore whether the DPL
thermal behavior exists in tissue. The experimental data of Andrd
et al. [15] would be used to estimate the phase lag times based on
the DPL model. It is needed to make the inverse analysis of a DPL
bio-heat transfer problem in the bi-layer spherical tissue. There are
mathematical difficulties in dealing with the non-Fourier heat
transfer problem. And also, the inverse problem is ill-posed because
a small measurement error induces a large estimated error [17,18].
Therefore, the studies about the inverse non-Fourier heat transfer
problem are not numerous. The literatures [16—20] mainly esti-
mated the boundary conditions with the analytical solution in
conjunction with measurement errors. Liu [21] had used the
experimental data of the concentration history to predict the
diffusion coefficient and the relaxation time during the rapid
transient mass transfer of NaCl diffusing in H,O based on the
hyperbolic mass diffusion equation. The present problem needs to
estimate four unknown phase lag times simultaneously. The
geometry effect and the interfacial boundary conditions introduce
the complexity and cause more mathematical difficulties. In order
to further address whether the dual phase lag model of bio-heat

transfer merits additional study, the comparisons of the tempera-
ture increase history among the present calculated results, the
calculated values from the classical bio-heat transfer equation,
and the experimental data are made for various measurement
locations.

2. Problem description

In magnetic tumor hyperthermia, fine magnetic particles are
localized at the tumor tissue. The literatures [15,22,23] regarded
the small tumor as a solid sphere with the radius R and becomes
a heat source of constant power density P in the small tumor for
excitation of alternating magnetic field. The heat source is assumed
to be surrounded by a medium of homogeneous heat conductivity.
The heating material, e.g. magnetic particles injected into the
tumor, and the surrounding medium are characterized by the
values of their heat conductivity k, their specific heat capacity c, and
their mass density p. Because of the spherical symmetry of the
system and the homogeneous time-independent power density
P inside the sphere the temperature distribution depends only on
distance r from the center of the sphere and on time t.

For experimental study, Andrd et al. [15] made the heating
material of carrageenan and a variable amount of magnetite with
amean grain size of 1 pm and embedded it in extended muscle tissue
from cow. The composite was formed as cylinder which diameter and
height are 5.5 mm. In accordance with the contents of the literatures
[24], the edges of the cylinder have a stronger heat transfer into the
surroundings and remain cooler, and the isotherms would approach
circle at the central cross-section. Andrd et al. [15], thus, specified the
measurement locations in sphere radius. Fitting in with the experi-
mental data, this paper regards the composite as a sphere of 6.3 mm
diameter as Andrd et al. [15] did. The spatial distribution of temper-
ature increase as function of exposure time was measured with
thermocouples as shown in Fig. 1.The region 0 < r < R is a composite
of carrageenan and magnetic particles. The effective density p; and
the effective specific heat ¢; are calculated as p; = ¥pg + (1 —¥)p;



1140 K.-C. Liu, H.-T. Chen / International Journal of Thermal Sciences 49 (2010) 1138—1146

Spherical
composite

material

Heati . .
(Heating Thermocouple junctions

area) I -
1 .
Surrounding
tissue

R

Fig. 1. Illustration for model configuration.

and ¢; = Ycg + (1 — )¢, where subscripts g and t symbol the
magnetic particles and the carrageenan. y is the volume fraction of
magnetic particles inside the sphere. In accordance with Andrd et al.
[15], the spatial distribution of particles of high heat conductivity in
a matrix of low heat conductivity may be approximated by a serial
arrangement of the two materials with the respective volume
fractions

ky = (iﬁ,;‘”)*l (1)

kg

In the experiment, the composite consists of 106 mg magne-
tite and carrageenan gel with the following parameters:
k1 =0.778 W/(K m), p1 = 1.66 g/cm>, ¢; = 2.54]/(g K), R = 3.15 mm
and a power density of 615 W/cm®. The corresponding parame-
ters of the surrounding muscle tissue were taken as:
ky = 0.642 W/(K m), p2 = 1 g/cm?, ¢; = 3.72 J/(g K).

Tzou [25] proposed the DPL model that allows either the
temperature gradient to precede heat flux vector or the heat flux
vector to precede the temperature gradient. The linearized form of
the DPL model is based on the equation

2
aq+q:_kg 0°T

e or ~ “Tatar 2)
where T is the temperature and q is the heat flux. tr; means
the phase lag of the heat flux and 77 means the phase lag of the
temperature gradient. The heat flux precedes the temperature
gradient for 74 < 11 The temperature gradient precedes the heat
flux for 74 > t1. The DPL model depicts that not only the tempera-
ture gradient may precede the heat flux, but also the heat flux may
precede the temperature gradient. The values of 74 and t7 may be
different in tumor and normal tissue as well as the other physio-
logical parameters. For convenience of estimation, the present
work assumes 14 and tr constant and predicts them from the
experimental data given by Andrd et al. [15]. As 14 = 17 =0, the DPL
model would become the classical model of heat transfer. The
classical bio-heat transfer equation was derived based on the
classical model of heat transfer.

In a local energy balance, the one-dimensional energy equation
of the present problem is given as

PC% = ,%‘r] - %q +WpppCp(Ty — T) + Gm + Gr 3)
where pp and cp, respectively are the density and specific heat. The
spatial heating source g, is defined as g, = Pu(t), where u(t) is
a step function. The present work omits the metabolic heat
generation g, and the perfusion rate of blood wy for that the
experiment was not performed with living tissue.

Substituting Eq. (2) into the energy conservation equation (3)
leads to the heat transport equations in the heating material and
the extended muscle tissue with constant physiological parameters
as the following:

= (1+rq1%) {mc]%—P] for0<r<R 4)

10| ,(0T, 02T, d 0T,
2 2l =(1 — —£ <r<
kerar{r (ar T2y, +Tq2p; | P2C2; forR<r< w

(5)

The indices 1 and 2 mean the interior and exterior of the sphere
r < R, respectively.

The present work regards the temperature and the heat flux at
the interface of two regions is continuous. In other words, the heat
contact resistance at the interface between the two different media
is neglected. The boundary conditions are described as

w =0 and T;(0,t) isfinite (6)
T1(R,t) = T2(R, ) (7)
q1(R,t) = q2(R; 1) (8)
Ty(e,t) = To 9)
and the initial conditions are

Ty (r,0) = Ty, %I’O) =0 and q,(r,0) =0 k=1,2 (10)

3. Analytical methods

For convenience of analysis, a new dependent variable H is
defined as

H = r(T-Ty) (11)

Under the circumstances, Eqs. (4) and (5) in terms of H can be
rewritten as

9\ 9°Hy 9 oH,

forO<r<R (12)

0\ 92H, 0 oH,
k> (1 + TTZ&)(’)T = (1 + 1',1.,2&);)2@T forR<r < o« (13)

The boundary conditions and the initial conditions become

Hy(0,t) = 0 (14)
Hy(R,t) = Hy(R, 1) (15)
q1(R,t) = q2(R, 1) (16)
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Hy(oo,t) =0 (17)
and
H(r,0) =0, wzo, andq(r,0) =0 k=1,2 (18)

The temperature increase 6 is equal to
0 =T—Ty = H/r (19)

The value of H/r at r = 0 is indeterminate and must be replaced
by its limit as r — 0. Thus the value of the transient temperature
increase at the center is evaluated by using L’Hospital's rule as

6(0.1) = T(0.6) — Ty — lim L — 9H

r—-0r - E (20)

To solve the present problem, a hybrid scheme based on the
Laplace transform, a modified discretization scheme, and the least-
squares scheme is proposed. Please refer to Appendix A for the
details of the present numerical scheme.

4. Results and discussion

Measured values of the increase of temperature for the
parameters described above are plotted in Fig. 2 with symbols
indicating the various reduced distances: /R = 1.10; 1.39; 1.68; 1.98.
The symbols are discrete values of measured temperature that were
extracted from the continuous thermocouple record. These
measured values were presented in Fig. 3 in Ref. [15] originally.
Copy the figure from the PDF file and past on the panel of the
software Litter Painter, then locate the cursor on the symbols; as
a result, the values of # and t for each symbol can be determined
with the coordinates of the cursor on the 1024 x 768 pixels
monitor. The experimental errors of both # and t are within the
extent of the used symbols [15]. For theoretical study, Andrd et al.
[15] calculated the increase of temperature with exposure time
t based on the classical bio-heat transfer equation for the corre-
sponding parameters. Fig. 2 shows the calculated values from the
classical bio-heat transfer equation are out of the extent range of
the used symbols indicating measured values. This phenomenon
implies that the classical bio-heat transfer equation can not
completely describe the thermal behavior captured in the

O v v B Experimental data [15]
—~ 30 4 XXX Analysical results[15]
X Present results
2
S
= r/R=1.39
é) 20
e
=
[
g, 10 -
g
=
/R=168 TR=1.98
0 T T T
0 100 200 300
Time (s)

Fig. 2. Comparison of the calculated values from the classical bio-heat transfer
equation with the experimental data.

ovvmE Experimental data[15]
< 30 7 Present results with
o 1=8.9464 5; 11,;=15.4121 5
g 1=8.4322 5; 11,=14.5465 5
=
2 20 ~
k=
L
=
2. 10 A
g N
i R=l.68 TR=1.98
0 T T T T 1
0 100 200 300
Time (s)

Fig. 3. Variation of temperature increase with the predicted values of 743, 777, 742 and
712 from the measured data at r/R = 1.1.

experiment. However, the present numerical results agree well
with the calculated values given by Andrd et al. [15]. The accuracy of
the present numerical scheme for the direct solution is tested.

It is well known that the lag times 74 and trare the characteristic
of the dual phase lag model. To explore the physical meanings of
the dual phase lag model in the bio-heat transfer, evaluating the lag
times 74 and 17 is essential work. As the previous statement, the
values of 74 and 7y may be different in layers 1 and 2 as well as the
other physiological parameters. The phase lag times, 741, 11, 742 and
712, become the target estimated parameters of the present work,
and the number of parameters, N, is 4. The instruments have
a measurement error of 3% is common [19,20]. Therefore, in the
process of inverse analysis, the standard deviation of the
measurements was assumed to be a constant 0.03.The standard
deviation of the measurements gets a smaller value, the estimated
values of the phase lags will make the predicted temperature
increase closer to the experimental data, but the inverse compu-
tation is harder to converge. In addition, there is evidence [26] that
the values of the target estimated parameters in the inverse heat
transfer problem should depend on location. Therefore, this work
picked out four measured values from each measurement location
to be one set of reference values. These four sets of reference values
that have similar time nodes are presented in Table 1. Through
calculations, it is found that the different reference values lead to
the different estimated values of 147, 1113, 7q2 and 1y, that is, the
reference values affect the estimated results. This work has the
predicted value of 74 is about 7.36—8.43 s and the predicted value of
tris about 14.54—21.03 s for muscle tissue from cow. In Ref. [12], the
value of 74 is about 14-16 s and the value of tr is about
0.043—-0.056 s for processed meat. The present estimated results
have an obvious difference with those in Ref. [12] because the
media of heat transfer are different. Comparing with the results in
the literature [14], the present estimated values of 74 and t7 are
relatively large. Antaki [12] interpreted 14 as a delay time for
contact resistance between tissue particles; T was interpreted as
a measure of the conduction that occurs within tissues particles.
The lag time 74 can dominate the behavior of thermal wave prop-
agation, slow down the propagation velocity of thermal signal, and
manifest the feature of thermal wave [13,27—29]. Due to the effect
of 17, the characters of thermal wave would decay in DPL heat
transfer, and heat energy would transfer at a faster rate. However,
in the literature [14], the phase lags 74 and 17 are caused with the
nonequilibrium heat transfer between the blood in artery and the
surrounding tissue.
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Table 1
Reference values and estimated values.

Measurement location

Reference values of # (K) at various times t(s)

Estimated values of
Tq1, Tr1s T2, and 172 (8)

t =209, § = 18.375; t = 270, § = 19.775

fR=11 t=83,0=133; t= 142, 0 = 16.45;
/R =139 t=109,0=9.1;t=157,0 =11.2;
t=212,0 = 12.775; t = 274, 6 = 14
/R =168
t=212,0=945; t =274, 0 = 105
/R =198

t=109, § = 6.125; t = 157, § = 8.225;

t=109, § = 4.025; t =157, 0 = 5.6;
t=212,0 = 6.65; t = 274, 0 = 7.875

Tq1 = 8.9464, Ty = 15.4121;
Tq2 = 8.4322, 1, = 14.5465
Tq1 = 7.6140, 1y = 20.1088;
Tq2 = 7.3629, T, = 18.7825
Tq1 = 8.2116, 7y = 21.3856;
Tq2 = 8.0080, 15 = 20.5054
Tq1 = 8.1768, 1y = 22.5628;
Tq2 = 7.7672, 15 = 21.3071

On the other hand, the present results were estimated with the
linearized form of the DPL model. Because it is the most commonly
used form to analysis the non-Fourier heat transfer problems. The
literatures [3—7,12,14] estimated the values of phase lag times
always base on the linearized form of the DPL or CV model. If this
paper estimates the values of phase lag times with a higher order
Taylor series expansion form of the DPL model, the estimated
values of phase lag times may become small. Another possibility is
that the present estimated values of 74 and 7 are affected with the
structure of the composite.

To show the rationality of the estimated results, the estimated
values of 143, 777, 742 and 172, as shown in Table 1, were used to calculate
the increase of temperature with exposure time t at the various
reduced distances: r/R = 1.10; 1.39; 1.68; 1.98. These calculated results
are plotted in Fig. 3 and Figs. B1—B3 (in Appendix B), respectively.
These figures present the variation of temperature increase 6 for
various sets of rrand 14 at various reduced distances: r/R = 1.10; 1.39;
1.68; 1.98. The calculated results of thermal response agree with the
experimental data implies that the estimated results approximate
reality and shows the efficiency of the present method for such
a problem. In other words, these experimental data seem to evidence
the DPL behavior in bio-heat transfer. In the mean time, the longer
the distance of the measurement location from the center is, the later
the beginning of thermal response is. It is the behavior of finite
propagation of thermal signal. The variation curves of temperature
increase # are smooth, not like in Refs. [6,12], because the ratio of 11 to
74is greater than 1. The effect of 77 stretches out the thermal wave and
destroys the sharp wave front. The results shown in Refs. [27—29]

25 S
1q;=8.9464 s; 11,=15.4121 s
Tp=8.4322 53 11,=14.5465 s

Q 20 -1 e T

-’ 19,=7.6140 s; 7,=20.1088 5 ’_,.——"'

% 10,=7.3629 5 11,=18.7825 5P

)

5 15

2 rR=1.1 7 1/R=139 "

o

Yt

2

< 10 T

=

5 - -

g* 14,=8.2116 5; 1,=21.3856 s

0 14,=8.0080 53 1,=20.5054 s

= 54
1q,=8.1768 s; 1,=22.5628 s
10,=7.7672 53 11=21.3071 s

0 ’ I . I . I
0 100 200 300

Time (s)

Fig. 4. Comparison among the calculated results of transient temperature increase for
the four sets of predicted values of 743, Tr;, 742 and 712 at r/R = 1.10 and 1.39.

indicate that the phase lag time 74 can dominate the speed of
thermal wave propagation, but the phase lag time tr does not. It is
also found in a detailed observation that the larger value of 74, makes
the beginning of thermal response later. As stated in Ref. [26],
depending on the location of the sensor, the solution of the inverse
problem may become sensible to measurement errors of the input
data. The above phenomena point out that the DPL behavior of bio-
heat transfer exists in tissue very possibly. The further study about
the meanings of the DPL model in bio-heat transfer is worthy to do.

The comparison among the calculated results of transient
temperature increase for the four sets of the predicted values of 743,
711, T2 and 1p2 at r/R = 1.10 and 1.39 is made, as shown in Fig. 4.
There is a slight difference among them for the different predicted
values of 147, 7711, 742 and t7p. The curves are quite close because the
calculated results are in the rational range of measurement errors.
The comparison for r/R = 1.68 and 1.98 is also made. As shown in
Fig. 5, the variation curves of temperature increase at r/R = 1.68 and
1.98 almost coincide. Essentially, the non-Fourier effect is more
obvious in small-scales and small times. The temperature variation
nearby the heating source would be sensible to the values of 74 and
7r. In the present work, r/R = 1.10 is the measurement location
nearest the heating source. Therefore, there is a more obvious
difference among the curves for /R = 1.10. The calculated results
present one another feature of the non-Fourier thermal behavior of
bio-heat transfer.

Fig. 6 displays the comparison among the experimental data, the
calculated values from the classical bio-heat transfer equation, and
the present results with tq; =8.9464 s, 111 = 154121 5, 7p = 8.432255,
and 1 = 14.5465 s. It is obvious that the present results approach the

25 S
1q,=8.9464 5; 11,=15.4121 s
Ty,=8.4322 5; 1,,=14.5465 s
AN A | eccccccacacaa.
X 20 1 4, 2776140 s: £,-20.1088 5
QL 14,=7.3629 s5; 1,=18.7825 s
[+ - — -
& 15 o 1=8.21165:7,=21.3856 5
= 74,=8.0080 s; 1,,=20.5054 s
o | t/R=1.68
2 10 1¢,=8.1768 s; 1;,=22.5628 s
g 1,=7.7672 53 11,=21.3071 s
S, -
g
(]
= 5 4
O ] ! | ! | ! |
0 100 200 300

Time (s)

Fig. 5. Comparison among the calculated results of transient temperature increase for
the four sets of predicted values of 14, 715, 742 and 112 at r/R = 1.68 and 1.98.
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1 Experimental data [15]
Classical results

30 - Non-Fourier results with
1q;=8.9464 s; 11 =15.4121 s

1 ©p=8.4322 5; T1,=14.5465 s

ovvana

Temperature Increase (K)

Time (s)

Fig. 6. Comparison among the experimental data, the calculated values from the
classical bio-heat transfer equation, and the present results with 74 = 8.9464 s,
Ty = 154121 s, 142 = 84322 5, and 11, = 14.5465 s.

experimental data more, even in the early times. With time passing
over, the calculated values from the classical bio-heat transfer
equation gradually approach the experimental data. This agrees with
that the non-Fourier effect would dissipate with time. Correspond-
ingly, the classical thermal behavior would be dominant with the
distance from the center of sphere. It is observed from the results in
Fig. 6 that the calculated values from the classical bio-heat transfer
equation approach the experimental data with the value of r/R
increasing. In other words, the thermal wave propagation is gradually
replaced by the diffusion behavior with the penetration distance of
thermal signal increasing. The above results enhance the features of
the non-Fourier thermal behavior in the experimental data.

The predicted values, tq1 =8.9464 s, 171 =15.4121 5; 1o = 8432255,
112 = 14.5465 s, were used to calculate the temperature distributions
at various times. The calculated results are presented in Fig. 7.
The phase lag of the heat flux t4 enhances the wave-like feature while
the phase lag of the temperature gradient 77 depicts the diffusion-like
feature. In this case, the phase lag of the temperature gradient 17 is
greater than the phase lag of the heat flux 7. The diffusion-like

40
| T0,=8.9464 53 Tr,=15.4121 s
” Tp=8.4322 s; T1,=14.5465 s
~ 30
3
S |1 t=150s
=
13)
=
o 20
=
2
s i t=50s
15)
(<
5 10 -
= t=10s
0 T T T T 1
0 1 2 3

Reduced Distance /R

Fig. 7. Temperature distributions with 14; = 8.9464 s, 111 = 154121 5; 15, = 8.4322 5,
T2 = 14.5465 s at various times.

feature is over the wave-like feature. The domain O < r/R < 1 is the
heating area, so the temperatures are higher. With time, heat energy
gradually transfers into the surrounding medium and make the
temperatures increase, then the temperature distribution in the
heating area approach a steady situation. Though the location r = 0 is
a singular point in this problem, the present numerical results are
stable and have the finite value. It presents that the present numerical
scheme is stable for analyzing such problems.

5. Conclusions

This work investigates the dual phase lag thermal behavior in
tissue through an inverse bio-heat transfer problem in the spherical
coordinate system. The values of the phase lag times, 74 and 17, are
estimated in accordance with the experiment data. The calculated
results of the history of temperature increase agree with the exper-
imental data at various measurement locations. Various features of
the non-Fourier thermal behavior are observed from the present
results. The beginning of thermal response is later with the longer
distance of the measurement location from the center. It is the
behavior of finite propagation of thermal signal. The larger value of 74
makes the beginning of thermal response later. The present results
gradually close to the calculated values from the classical bio-heat
transfer equation with time. This phenomenon agrees with that the
non-Fourier effect would dissipate with time. In the mean time, the
classical thermal behavior would be dominant with the distance from
the center of sphere. These features give the first evidence to the dual
phase lag thermal behavior in muscle tissue from cow.

There exists a lot of controversies in the literature about whether
or not DPL conduction and, more generally, any non-Fourier
conduction is important for biological tissues, as stated by Zhang
[14]. In accordance with the present results, the dual phase lag
thermal behavior in tissue should be worthy to have further experi-
mental study. It will be helpful to the relevant developments. The
solution of the inverse problem may become sensible to measure-
ment errors of the input data, so this work has no certain values for 74
and t7. The present results can be the reference for further study.
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Appendix A
1. For direct solution

The Laplace transform technique is used to map the transient

problem into the steady one. The differential equations (12) and
(13) are transformed under the initial conditions (18) as

d?H "
Tzk—xﬁHk = —fir K=1,2 (A1)
where s is the Laplace transform parameter of time ¢t.

Ai,fhfz, and Kj, are defined as

2= Lopcs k=12 (A2)
Ki
P(1

f = PA*s) (A3a)

- k1(1 + t115)s
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(A3b)

1+ TTKS
k
1+ 7gs

K, = k k=12 (A4)

In accordance with Eq. (2), the boundary conditions (14)—(17) in
the Laplace transform domain can be written as

H1(0,5) =0 (A5)
Hi(R,s) = Ha(R,s) (A6)
K (—dgld(f’s) - %) — K <—dﬁzd(f’s) - %) (A7)
Hy(e,s) = 0 (A8)

The present paper divides the whole space domain into several
sub-space domains. For continuities of heat flux and temperature
within the whole space domain, the following conditions are
required at the interface of the sub-space domain j-1, [r;_1,1;], and
the sub-space domain j, [rj, i, 1].

Hi qx(r) = Hyg(ry) i=1,2,...,M;j =ik =12 (A9)
dH; 4 ,(r;) H;_ dH;  (r;) H;
j—1,k\li 1 k| gk _ﬂ
Kk( dr r; ) - K"( dr r;

i=1,2..Mj=ik=12 (A10)

where the subscript i is the number of node. M is the total number
of nodes.

A modified discretization technique based on Egs. (A9) and
(A10) is developed for the governing algebraic equations in the
present work. Before performing the derivation of the governing
algebraic equations, H should be approximated by using the nodal
temperatures and shape function within a small sub-space domain.
The present work derives the shape functions from the governing
equation (A1).

For the sub-space domain j, [r;,1;,1], the analytical solution of
the governing equation (A1) subjected to the boundary conditions

Hik(r) = Hix and  Hjy(rii1) = Hijqk (A11)
are easily obtained and can be written as
. 1 . .
Hjj, = W{ <H1‘J< - f-’;ﬁ) sin hay(riyq — 1)
k ey
+ <Hi+1<k - ?%ﬁﬂ) sin ha(r — ri)} + f%r (A12)

Similarly, Eq. (A1) in the sub-space domain j-1, [r;_1,1;], can be
written as

- 1 . S .
Hj_y = sm—h)tk{ <Hi1,k - gﬂw) sin hy(r; — 1)
+ (Hix — f—’;ri sin ha(r —ri_y) ¢ + f—’ér (A13)
T A i

where ¢ denotes the length of sub-space domain or the distance
between two neighboring nodes. The value of ¢ can be different in
the different layer.

Substituting Egs. (A9), (A12), and (A13) into Eq. (A10) and then
evaluating the resulting derivative can lead to the discretized form
for the interior nodes in layer k as following

H;i 1y — 2cos h(An)H;y + Hi g g
i/
52

= ri_q1 — 2rjcos h(Ar) + rigq]
k

(A14)

The discretized form for the node at the interface between layer
1 and layer 2, r = R, can be obtained from the boundary condition
(A7) and is written as

K M i (7 Aqcos hA1Q Acoshie Ky Ky
Isin hA;0 11 17sin ha 0 2sinh&,2 'R R
_ b -
x Hj (1,2 +I<2F;AZQHI'+1,2
. h 1 cos hA;8
- ]E sin h/hQ( AT hleR +1 (A15)

Eqgs. (A14) and (A15) in conjunction with the discretized forms of
the boundary conditions can be rearranged as the following matrix
equation

[BI{H} = {F} (A16)

where [B] is a matrix with complex numbers, {H} is a column vector
in the Laplace transform domain, and {F} is a column vector rep-
resenting the forcing term. Thereafter, the value of H in the physical
domain can be determined with the application of the Gaussian
elimination algorithm and the numerical inversion of the Laplace
transform [30].

2. For inverse solution

In order to estimate the target parameters from the experi-
mental data, the least-squares minimization technique is applied to
minimize the sum of the squares of the deviations between the
calculated values and the experimental data at the specified
measurement location r;. The sum of the squares of the deviations
between the calculated values and the measurement values can be
expressed as

N
E(A1, Az, .. AN) = (0;311_%%)2

m=1

(A17)

where 6<% and §™ are the calculated temperature increase and the
measurement temperature increase at the mth time node,
respectively. A, n = 1, 2, 3,..., N, are used to denote the estimated
parameters. In this paper, the estimated parameters are the phase
lag times, tq0, T13, Tq2 and tpp. The estimated values of A, are
determined with that the value of E is minimum. The computa-
tional procedures are described as follows.

First, the initial guesses of A, are given. Afterwards, the calcu-
lated temperature increase 0Cmal at the specified measurement
location r = r; is taken from Egs. (A14—A16). Deviations between
6% and ™" are expressed as
em = 060 —gm% form = 1,2,3,....N (A18)

The next calculated value Hcmal"*can be expanded in a first-order
Taylor series as

N aecal

O = O+ > GamdAn
n=1

(A19)
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In order to obtain the derivative aﬂ,c,‘," /0Anin Eq. (A19), the next
guessed value of Ay, Ay, is introduced as

A, = An + dndmn form,n = 1,2,3,....N (A20)
where d,, denotes the correction. The symbol 6, is Kronecker
delta.

The next calculated value 0;‘}1‘*, similarly, with respect to
Ay, can be determined from Egs. (A14—A16). Deviations between
0<"" and 6 are written as

e = 09" —gm form = 1,2,3,..,N (A21)

The derivative aﬁﬁ,‘f’ /0An can be expressed in the finite-difference
form as

60601 0cal7* o 6mea
_ m_ m m —
Wmn = WA, 7}42714” formn =1,2,3,....N (A22)

Substituting Eqs. (A18), (A20), and (A21) into Eq. (A22) leads to

X
_en—em

Wmn = d formn =1,2,3,....N (A23)
n

The Substitution of Egs. (A22) and (A23) into Eq. (A19) yields

N
geabs — gl 4 > wmnd, form =1,2,3,.,N

(A24)
n=1
where d; = dA, denotes the new correction of A;.
Substituting Eqs. (A18) and (A21) into Eq. (A24) has
N N
em = em+ »_ wmnd, form =1,2,3,..,N (A25)
=1

In accordance with Egs. (A17) and (A21), the sum of the squares of
the deviations between the calculated values and the measurement
values E(A{ + AAq,A; + AA,, ..., Aq + AAy) can be expressed as

(A26)

E = mi] (e:n>2

In order to yield the minimum value of E with respect to Ay,
differentiating E corresponding to the new correction d, is
performed. Thus the correction equations corresponding to A, can
be expressed as

N N
Wp@mnd] = =Y wpe; form =123, .N  (A27)
n=1 =1

M=

1=

—_

Eq. (A27) is a set of four algebraic equations for the new
correction dy, . The new correction d,, are obtained from Eq. (A26).
Hence, the new values of A, A + d;, can be determined.

The above computation procedures were repeated until the
value of

cal mea
‘9m — 0m

mea
am

<e¢ form=1,2,3,...N (A28)

where ¢ is the standard deviation of the measurements.

Appendix B

Ov v m Experimental data [15]

30

Present results with
Tq,=7.6140 s; 71,=20.1088 s
Tq,=7.3629 s; t1,=18.7825 s
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Fig. B1. Variation of temperature increase with the predicted values of g3, 713, 742 and
112 from the measured data at r/R = 1.39.
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Fig. B2. Variation of temperature increase with the predicted values of 74, 113, 742 and
112 from the measured data at r/R = 1.68.
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Fig. B3. Variation of temperature increase with the predicted values of 7¢7, 11, 7q2 and
112 from the measured data at r/R = 1.98.
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